
MPlib
1

ConTEXt
2

MkIV
3



We started using MetaPost over ten

years ago. Graphics were embedded

as eps.

1

Challenged by Sebastian Rahtz we

wrote a MetaPost to pdf converter in

TEX so that we could use them directly.

2

We also added some extensions (us-

ing specials) like shading, transparency

and support for processcolors, spotcol-

ors and multitones.

3

At some point a mechanism appeared

to include MetaPost code in the doc-

ument source. Processing could

take place between runs or directly

(write18).

4

Embedding text was taken care of as

efficient as possible, later by using

some trickery that avoided separate

runs altogether.

5

Reusing graphics has always been part

of the game, either or not based on the

current state of the document (dimen-

sions, colors, etc.).

6

Such graphics are rather well integrat-

ed in background mechanisms and can

adapt themselves to situations.

7

Graphics know a bit about the current

situation, i.e. layout, font and other

dimensions are passed along.

8

By now the mechanisms are pretty

stable and frequently used by users.

No real in-depth knowledge is needed.

9



In education documents we often need

backgrounds, rules in margins, under-

lining and special makeup of section

and chapter titles.

1

This easily mounts up to tens of graph-

ics per page, even when graphic data is

collected.

2

This may add several seconds or run-

time per page and more when we deal

with text in MetaPost (which can be

avoided).

3

For special purposes like flowcharts

and gnuplot graphics runtime may

even be more influenced by calling

MetaPost.

4

The expectation was that by staying in-

side TEX we could gain a lot. Of course

MetaPost still had to do some work.

5

In ConTEXt MkIV we already had reim-

plemented the MetaPost to pdf con-

verter which in Lua is a bit faster than

in TEX (the bottleneck is now in the lit-

erals).

6

Some experiments (with Fabrice)

demonstrated that using pipes was too

fragile in the current situation (timing

problems).

7

Using a tight integration (i.e. a library)

made more sense and therefore the

mplib project was started.

8

That library would focus on the graph-

ic part as it was expected that text

could be dealt with at the TEX end.

9



In order to test the library the Meta-

Post to pdf converter had to be rewrit-

ten (again).

1

Although we could have used the

PostScript parser, it made more sense

to operate on the raw output (repre-

sented in tables).

2

Experiments with the first version of

the library showed that we could easi-

ly get a throughput of thousands of

graphics per second (processing and

conversion).

3 4

The most complex part was (as usual)

dealing with paths drawn by special

pens, a complication that eventually

resulted in a proper helper function.

5

We had expected to be able to use the

relative new pre/postscript features of

MetaPost, but this mechanism needs

to be extended in order to replace all

special based tricks.

6

Multiple runs for a graphic (as used for

special text processing and outlines)

is handled by MkIV internally in such

a way that processing time is hardly

influenced.

7

All that users now see of MetaPost is

the reported runtime and of course

error messages (these go to the TEX

log).

8

In everyday documents MetaPost run-

time has become close to zero, and in

complex documents neglectable com-

pared to the overall runtime.

9



All existing mechanisms are supported

in ConTEXt MkIV. It really helps that

users are eager to update and test.

1

MetaPost format generation is done

automatically and are kept in a

ConTEXt specific namespace (bound

to the TEX format).

2

Multiple formats are supported but not

yet at the user interface level. Soon

each graphic can get a format attached.

3

We will also support multiple in-

stances of a format so that user graph-

ics will not interfere with system

graphics (this is handy for modules).

4

We will use mplib for runtime font

generation. Tests show that a gener-

ation speed of 500-1000 glyphs with

pens per second uncached is feasible

(Dell M90 with Vista).

5

Eventually mplib might produce prop-

er charstrings that then can be used to

construct (and extend) real fonts on

the fly.

6

In our reference document of (current-

ly) 240 pages the 66 graphics take .35

seconds. The speed gain is even more

noticeable for the LuaTEX manual.

7

Document styles that operate close to

what is reasonable now behave rather

normal. We currently test these mech-

anisms on real projects.

8

Tight integration of MetaPost resulted

in many users using these features.

We expect even more usage due to the

neglectable runtime.

9


