
OpenType Math

In ConTEXt

Dante 2010

Traditional approach

There are several reasons why the font implementation in traditional 􀀁TEX (as

used by 􀀁CONTEXT 􀀁MKII) is somewhat complex.

• The traditional 􀀁TEX fonts come in design sizes.

• Math fonts are defined in triplets (3 sizes) called families.

• Relative sizes depend on the bodyfont size andmixed typefaces have addi-

tional relative sizing.

• Fonts have at most 256 characters so we end up with multiple fonts.

• Math fonts (as text fonts) can have different encodings and we need to be

able to mix them.

• Some symbols have no real glyph but are constructed by macros.

• Math has always to be set up in advance (while text font definitions can be

delayed).

But . . . 􀀁UNICODE and 􀀁OPENTYPE canmake things easier (if we forget about a few

annoyances).

Traditional approachMath In MKIV

Inparallelwith thedevelopmentof 􀀁LUATEXweadapted the 􀀁MKIVmath fontmech-

anism in rather non-standard way:

• Weonly use onemath familywhich simplifies the definition and speeds up

initialization.

• Weremoved (replace) all artifacts that result fromlimitations inComputer

Modern.

• We no longer support 8 bit fonts simply because we no longer need them.

• WeuseCambriaMath as benchmark for supporting traditionalmath fonts.

• Switchingbetweenalphabets isno longera familymatterbut implemented

using attributes.

• Dirty spacing tricks are dealt with by noad processing instead of active

character manipulations.

• We initialize math characters using the 􀀁MKIV character database.

Traditional approach

Math In 􀀁MKIV
Complications

Bold math (that is: a full switch to bold) is not yet supported simply because

we don’t have the proper fonts for doing it.

Gaps in 􀀁UNICODEmath vectors have been annoyingly delaying development (it

just takes time to figure out things).

Changes in 􀀁UNICODE result in fuzzy situations (especially with respect to some

greek characters) as as there can be applications around that still use them.

Creating virtual glyphs for symbols that are traditionallymade bymacros (i.e.

lack in the 􀀁AMS symbol set or are not in the math extensions fonts due to lack

of room) takes much time.

Some 􀀁UNICODE alphabets have holes which forces us (like any application) to

cook up workarounds.

The 􀀁TEX community is not really involved in those new technologies (for in-

stance we lag behind in font technology).

Traditional approach

Math In 􀀁MKIV

Complications

Side Effects

We gained some more insight in the reason why things were implemented in

rather special ways in 􀀁TEX (font limitations).

We learned a few more dirty tricks. It was fun to reverse engineer some of

Don’s macros.

We could go ahead in spite of the LatinModern and Gyremath fonts not being

available (as we had Cambria).

We were forced to add quite some tracing options and visualizations.

But eventuallywe ended upwith a cleaner, faster and better systemand in the

process got rid of math encodings, no longer have macro based characters,

and could trash much code at the 􀀁TEX end.

We had to adapt (and probably have to do it a fewmore times) the newmech-

anisms when we finally figured out what is intended.

A nice testcase is the experimental Euler 􀀁OPENTYPE font. It is good to have a

more 􀀁TEX related reference font alongside Cambria for testing.

Traditional approach

Math In 􀀁MKIV

Complications

Side Effects

Features and Sizes

text lmmi12 at 12pt cambria at 12pt with ssty=no
script lmmi8 at 8pt cambria at 8pt with ssty=1
scriptscript lmmi6 at 6pt cambria at 6pt with ssty=2

\definefontfeature[math][analyze=false,script=math,language=dflt]

\definefontfeature[text] [math][ssty=no]
\definefontfeature[script] [math][ssty=1]
\definefontfeature[scriptscript][math][ssty=2]

Traditional approach

Math In 􀀁MKIV

Complications

Side Effects

Features and Sizes

Subtle Differences

􀒁􀎉X 􀒁􀎉X XXX XXX XXX
cambria

150pt (ssty)

cambria

120pt 80pt

60pt (ssty)

cambria

120pt

80pt 60pt

lm roman

150pt

lm roman

120pt

80pt 60pt

∑
􀐎
􀐉􀍭􀍡

∑
􀐎

􀐉􀍭􀍡∫
􀐎

􀐉􀍭􀍡
∫
􀐎

􀐉􀍭􀍡
log

􀐎

􀐉􀍭􀍡
log

􀐎

􀐉􀍭􀍡
cos􀐎􀐉􀍭􀍡cos􀐎􀐉􀍭􀍡∏

􀐎
􀐉􀍭􀍡

∏
􀐎

􀐉􀍭􀍡
Traditional 􀀁CONTEXT scaling versus advertized scaling for Cambria.

Traditional approach

Math In 􀀁MKIV

Complications

Side Effects

Features and Sizes

Subtle Differences

Implementation

Support for Cambria is rather straightforward:

• We load the 􀀁OPENTYPE font table, create a suitable math 􀀁TFM table from it

(size chain, extensibles, etc).

• We pass the 􀀁OPENTYPEmath equivalent parameters directly to 􀀁LUATEX.

Support for traditional 􀀁TEX fonts follows a different route:

• We have defined virtual font handlers for this class of fonts.

• We create the virtual font on the fly.

• Missing glyphs are composed runtime so that we have only direct refer-

ences.

• Instead of traditional 􀀁TEX parameters we fake 􀀁OPENTYPE parameters.

This way we have similar support at the 􀀁TEX end for both 􀀁OPENTYPE and tradi-

tional fonts and can drop in future Latin Modern and Gyre easily.

Traditional approach

Math In 􀀁MKIV

Complications

Side Effects

Features and Sizes

Subtle Differences

Implementation

Virtual MKIV Font

mathematics.make_font ("lmroman10-math", {
{ name="lmroman10-regular.otf", features="virtualmath", main=true },
{ name="lmmi10.tfm", vector="traditional-mi", skewchar=0x7F },
{ name="lmsy10.tfm", vector="traditional-sy", skewchar=0x30, parameters=true } ,
{ name="lmex10.tfm", vector="traditional-ex", extension=true } ,
{ name="msam10.tfm", vector="traditional-ma" },
{ name="msbm10.tfm", vector="traditional-mb" },
{ name="lmroman10-bold.tfm", "traditional-bf" } ,
{ name="lmmib10.tfm", vector="traditional-bi", skewchar=0x7F } ,
{ name="lmsans10-regular.tfm", vector="traditional-ss", optional=true },
{ name="lmmono10-regular.tfm", vector="traditional-tt", optional=true },

})

\definefontsynonym
[LMMathRoman10-Regular]
[LMMath10-Regular@lmroman10-math]

\starttypescript [math] [palatino] [name]
\definefontsynonym [MathRoman] [pxmath@px-math]
\loadmapfile[original-youngryu-px.map]

\stoptypescript

Traditional approach

Math In 􀀁MKIV

Complications

Side Effects

Features and Sizes

Subtle Differences

Implementation

Virtual 􀀁MKIV Font

NoMore Macros

All constructs are defined as natural 􀀁UNICODE pointswith proper chained sizes

and extensibles.

There are trackers to see what 􀀁MKIV does withmath (as all intermediate noad

lists are processed at the 􀀁LUA end):

\enabletrackers[math.analyzing]
\ruledhbox{$a = \sqrt{b^2 + \sin{c} - {1 \over \gamma}}$}
\disabletrackers[math.analyzing]

𝑎 = √𝑏􀍣 + sin 𝑐 −
􀍢

􀐷

Traditional approach

Math In 􀀁MKIV

Complications

Side Effects

Features and Sizes

Subtle Differences

Implementation

Virtual 􀀁MKIV Font

No More Macros

. . . continued

U+0221A: √ √ square root

width: 860800, height: 1207040, depth: 54400, italic: 0

mathclass: radical, mathname: surd

next: U+F05A9√=>U+F05AB√=>U+F05AC√=>U+F05AD√=>U+F05AE√

=> variants: U+023B7 ⎷ => U+020D3 ⃓ => U+F0959 √

[0x221A] = {
adobename = "radical",
category = "sm", cjkwd = "a", description = "SQUARE ROOT",
direction = "on", linebreak = "ai",
mathclass = "radical", mathname = "surd", unicodeslot = 0x221A,

}

Traditional approach

Math In 􀀁MKIV

Complications

Side Effects

Features and Sizes

Subtle Differences

Implementation

Virtual 􀀁MKIV Font

No More Macros

. . . continued

Math Classes

We use the character database to define math.

U+0002F: / / solidus

width: 642560, height: 915840, depth: 275200, italic: 0

mathsymbol: U+02044 ⁄

[0x002F] = {
adobename = "slash", contextname = "textslash",
category = "po", cjkwd = "na", description = "SOLIDUS",
direction = "cs", linebreak = "sy",
mathsymbol = 0x2044, unicodeslot = 0x002F,

}

Traditional approach

Math In 􀀁MKIV

Complications

Side Effects

Features and Sizes

Subtle Differences

Implementation

Virtual 􀀁MKIV Font

No More Macros

. . . continued

Math Classes

. . . continued

Future versions of 􀀁MKIVwill support the dictionarymodel as used in 􀀁MATHML 3

(and 􀀁OPENMATH).

[0x2044] = {
adobename = "fraction",
category = "sm",
contextname = "textfraction",
description = "FRACTION SLASH",
direction = "cs",
linebreak = "is",
mathspec = {

{ class = "binary", name = "slash" },
{ class = "close", name = "solidus" },

},
unicodeslot = 0x2044,

}

Traditional approach

Math In 􀀁MKIV

Complications

Side Effects

Features and Sizes

Subtle Differences

Implementation

Virtual 􀀁MKIV Font

No More Macros

. . . continued

Math Classes

. . . continued

Dynamic Alphabets

$abc \bf abc \bi abc$
$\mathscript abcdefghijklmnopqrstuvwxyz %

1234567890 ABCDEFGHIJKLMNOPQRSTUVWXYZ$\par
$\mathfraktur abcdefghijklmnopqrstuvwxyz %

1234567890 ABCDEFGHIJKLMNOPQRSTUVWXYZ$\par
$\mathblackboard abcdefghijklmnopqrstuvwxyz %

1234567890 ABCDEFGHIJKLMNOPQRSTUVWXYZ$\par
$\mathscript abc IRZ \mathfraktur abc IRZ %

\mathblackboard abc IRZ \ss abc IRZ 123$

𝑎𝑏𝑐𝐚𝐛𝐜𝒂𝒃𝒄 𝒶𝒷𝒸𝒹ℯ𝒻ℊ𝒽𝒾𝒿𝓀𝓁𝓂𝓃ℴ𝓅𝓆𝓇𝓈𝓉𝓊𝓋𝓌𝓍𝓎𝓏1234567890𝒜ℬ𝒞𝒟ℰℱ𝒢ℋℐ𝒥𝒦ℒℳ𝒩𝒪𝒫𝒬ℛ𝒮𝒯𝒰𝒱𝒲𝒳𝒴𝒵

𝔞𝔟𝔠𝔡𝔢𝔣𝔤𝔥𝔦𝔧𝔨𝔩𝔪𝔫𝔬𝔭𝔮𝔯𝔰𝔱𝔲𝔳𝔴𝔵𝔶𝔷1234567890𝔄𝔅ℭ𝔇𝔈𝔉𝔊ℌℑ𝔍𝔎𝔏𝔐𝔑𝔒𝔓𝔔ℜ𝔖𝔗𝔘𝔙𝔚𝔛𝔜ℨ

𝕒𝕓𝕔𝕕𝕖𝕗𝕘𝕙𝕚𝕛𝕜𝕝𝕞𝕟𝕠𝕡𝕢𝕣𝕤𝕥𝕦𝕧𝕨𝕩𝕪𝕫𝟙𝟚𝟛𝟜𝟝𝟞𝟟𝟠𝟡𝟘𝔸𝔹ℂ𝔻𝔼𝔽𝔾ℍ𝕀𝕁𝕂𝕃𝕄ℕ𝕆ℙℚℝ𝕊𝕋𝕌𝕍𝕎𝕏𝕐ℤ

𝒶𝒷𝒸ℐℛ𝒵𝔞𝔟𝔠ℑℜℨ𝕒𝕓𝕔𝕀ℝℤ𝖺𝖻𝖼𝖨𝖱𝖹123

𝑎𝑏𝑐𝐚𝐛𝐜𝒂𝒃𝒄 𝒶𝒷𝒸𝒹ℯ𝒻ℊ𝒽𝒾𝒿𝓀𝓁𝓂𝓃ℴ𝓅𝓆𝓇𝓈𝓉𝓊𝓋𝓌𝓍𝓎𝓏1234567890𝒜ℬ𝒞𝒟ℰℱ𝒢ℋℐ𝒥𝒦ℒℳ𝒩𝒪𝒫𝒬ℛ𝒮𝒯𝒰𝒱𝒲𝒳𝒴𝒵

𝔞𝔟𝔠𝔡𝔢𝔣𝔤𝔥𝔦𝔧𝔨𝔩𝔪𝔫𝔬𝔭𝔮𝔯𝔰𝔱𝔲𝔳𝔴𝔵𝔶𝔷1234567890𝔄𝔅ℭ𝔇𝔈𝔉𝔊ℌℑ𝔍𝔎𝔏𝔐𝔑𝔒𝔓𝔔ℜ𝔖𝔗𝔘𝔙𝔚𝔛𝔜ℨ

𝕒𝕓𝕔𝕕𝕖𝕗𝕘𝕙𝕚𝕛𝕜𝕝𝕞𝕟𝕠𝕡𝕢𝕣𝕤𝕥𝕦𝕧𝕨𝕩𝕪𝕫𝟙𝟚𝟛𝟜𝟝𝟞𝟟𝟠𝟡𝟘𝔸𝔹ℂ𝔻𝔼𝔽𝔾ℍ𝕀𝕁𝕂𝕃𝕄ℕ𝕆ℙℚℝ𝕊𝕋𝕌𝕍𝕎𝕏𝕐ℤ

𝒶𝒷𝒸ℐℛ𝒵𝔞𝔟𝔠ℑℜℨ𝕒𝕓𝕔𝕀ℝℤ𝖺𝖻𝖼𝖨𝖱𝖹123

Traditional approach

Math In 􀀁MKIV

Complications

Side Effects

Features and Sizes

Subtle Differences

Implementation

Virtual 􀀁MKIV Font

No More Macros

. . . continued

Math Classes

. . . continued

Dynamic Alphabets

Handy Automatisms

$ (a{,}b) = (1{.}20{,}3{.}40) $

\setupmathematics[autopunctuation=no]

$(a,b) = (1.20,3.40) $

(𝑎, 𝑏) = (1.20, 3.40)

\setupmathematics[autopunctuation=yes]

$ (a,b) = (1.20,3.40) $

(𝑎,𝑏) = (1.20,3.40)

Traditional approach

Math In 􀀁MKIV

Complications

Side Effects

Features and Sizes

Subtle Differences

Implementation

Virtual 􀀁MKIV Font

No More Macros

. . . continued

Math Classes

. . . continued

Dynamic Alphabets

Handy Automatisms

Reverse Engineering

\def\PLAINldots{\ldotp\ldotp\ldotp}
\def\PLAINcdots{\cdotp\cdotp\cdotp}
\def\PLAINvdots

{\vbox{\forgetall\baselineskip.4\bodyfontsize\lineskiplimit\zeropoint\kern.6\bodyfontsize
\hbox{.}\hbox{.}\hbox{.}}}

\def\PLAINddots
{\mkern1mu%
\raise.7\bodyfontsize\ruledvbox{\kern.7\bodyfontsize\hbox{.}}%
\mkern2mu%
\raise.4\bodyfontsize\relax\ruledhbox{.}%
\mkern2mu%
\raise.1\bodyfontsize\ruledhbox{.}%
\mkern1mu}

. . . ⋅ ⋅ ⋅
...

. . .

Traditional approach

Math In 􀀁MKIV

Complications

Side Effects

Features and Sizes

Subtle Differences

Implementation

Virtual 􀀁MKIV Font

No More Macros

. . . continued

Math Classes

. . . continued

Dynamic Alphabets

Handy Automatisms

Reverse Engineering

So . . .

In retrospect implementing support for 􀀁OPENTYPEmathhasproven tobeeasier

than expected, thanks to the fact that development and testing went smooth.

The virtual font building features made it possible to test 􀀁OPENTYPE Cambria

aswell as traditional 􀀁TEX fonts at the same time, something thatwas important

because of all the newmath parameters.

We’re also confident that the upcoming extensions (like math alignment) can

be tested and handled conveniently.

