OpenType Math

In ConTgXt

Dante 2010

Traditional approach

There are several reasons why the font implementation in traditional TgX (as
used by CONTEXT MKII) is somewhat complex.

The traditional TgX fonts come in design sizes.
Math fonts are defined in triplets (3 sizes) called families.

Relative sizes depend on the bodyfont size and mixed typefaces have addi-
tional relative sizing.

Fonts have at most 256 characters so we end up with multiple fonts.

Math fonts (as text fonts) can have different encodings and we need to be
able to mix them.

Some symbols have no real glyph but are constructed by macros.

Math has always to be set up in advance (while text font definitions can be
delayed).

But ... UNICODE and OPENTYPE can make things easier (if we forget about a few
annoyances).

Math In MKIV Traditional approach

In parallel with the development of LUATEX we adapted the MKIV math font mech-
anism in rather non-standard way:

e We only use one math family which simplifies the definition and speeds up
initialization.

e Weremoved (replace) all artifacts thatresult from limitations in Computer
Modern.

e We no longer support 8 bit fonts simply because we no longer need them.
e We use Cambria Math as benchmark for supporting traditional math fonts.

e Switching between alphabets is nolonger a family matter butimplemented
using attributes.

e Dirty spacing tricks are dealt with by noad processing instead of active
character manipulations.

 We initialize math characters using the MKIvV character database.

Complications

Bold math (that is: a full switch to bold) is not yet supported simply because
we don’t have the proper fonts for doing it.

Gaps in UNICODE math vectors have been annoyingly delaying development (it
just takes time to figure out things).

Changes in UNICODE result in fuzzy situations (especially with respect to some
greek characters) as as there can be applications around that still use them.

Creating virtual glyphs for symbols that are traditionally made by macros (i.e.
lack in the AMS symbol set or are not in the math extensions fonts due to lack
of room) takes much time.

Some UNICODE alphabets have holes which forces us (like any application) to
cook up workarounds.

The Tgx community is not really involved in those new technologies (for in-
stance we lag behind in font technology).

Traditional approach
Math In MKIV

Side Effects

We gained some more insight in the reason why things were implemented in
rather special ways in TgX (font limitations).

We learned a few more dirty tricks. It was fun to reverse engineer some of
Don’s macros.

We could go ahead in spite of the Latin Modern and Gyre math fonts not being
available (as we had Cambria).

We were forced to add quite some tracing options and visualizations.

But eventually we ended up with a cleaner, faster and better system and in the
process got rid of math encodings, no longer have macro based characters,
and could trash much code at the TgX end.

We had to adapt (and probably have to do it a few more times) the new mech-
anisms when we finally figured out what is intended.

A nice testcase is the experimental Euler OPENTYPE font. It is good to have a
more TgX related reference font alongside Cambria for testing.

Traditional approach
Math In MKIV
Complications

Features and Sizes Traditional approach

Math In MKIV

Complications
Side Effects

text lmmil2 at 12pt cambria at 12pt with ssty=no
script 1mmi8 at 8pt cambria at 8pt with ssty=1
scriptscript 1mmi6 at 6pt cambria at 6pt with ssty=2

\definefontfeature[math] [analyze=false,script=math,language=dflt]
\definefontfeature[text] [math] [ssty=no]

\definefontfeaturel[script] [math] [ssty=1]
\definefontfeaturel[scriptscript] [math] [ssty=2]

Traditional approach
Math In MKIV

Subtle Differences

Complications
= o —
V Side Effects
v ;v' / \/ Features and Sizes
: A A< A\¥ \\
- - —
cambria cambria cambria Im roman Im roman
150pt (ssty) 120pt 80pt 120pt 150pt 120pt
60pt (ssty) 80pt 60pt 80pt 60pt

Traditional CONTEXT scaling versus advertized scaling for Cambria.

Implementation

Support for Cambria is rather straightforward:

e We load the OPENTYPE font table, create a suitable math TFM table from it
(size chain, extensibles, etc).

e We pass the OPENTYPE math equivalent parameters directly to LUATEX.
Support for traditional TgX fonts follows a different route:

e We have defined virtual font handlers for this class of fonts.

e We create the virtual font on the fly.

e Missing glyphs are composed runtime so that we have only direct refer-
ences.

e Instead of traditional Tgx parameters we fake OPENTYPE parameters.

This way we have similar support at the Tgx end for both OPENTYPE and tradi-
tional fonts and can drop in future Latin Modern and Gyre easily.

Traditional approach
Math In MKI1V
Complications
Side Effects
Features and Sizes
Subtle Differences

Virtual MKIV Font

mathematics.make font ("lmromanlO-math", {
{ name="lmromanlO-regular.otf", features="virtualmath", main=true },
{ name="1mmil0.tfm", vector="traditional-mi", skewchar=0x7F },

{ name="1msy10.tfm", vector="traditional-sy", skewchar=0x30, parameters=true } ,

{ name="1lmex10.tfm", vector="traditional-ex", extension=true } ,

{ name="msaml0.tfm", vector="traditional-ma" },

{ name="msbm10.tfm", vector="traditional-mb" },

{ name="lmromanl10-bold.tfm", "traditional-bf" } ,

{ name="1mmib10.tfm", vector="traditional-bi", skewchar=0x7F } ,

{ name="lmsans10-regular.tfm", vector="traditional-ss", optional=true },

{ name="lmmonol0O-regular.tfm", vector="traditional-tt", optional=true },
+)

\definefontsynonym
[LMMathRoman10-Regular]
[LMMath10-Regular@lmromanl1O-math]

\starttypescript [math] [palatino] [name]
\definefontsynonym [MathRoman] [pxmath@px-math]
\loadmapfile[original-youngryu-px.map]

\stoptypescript

Traditional approach
Math In MKIV
Complications
Side Effects
Features and Sizes
Subtle Differences
Implementation

NO M()l‘e Macro S Traditional approach

Math In MKIV

: : : : : Complications

All constructs are defined as natural UNICODE points with proper chained sizes _ p

: Side Effects
and extensibles. _

Features and Sizes

There are trackers to see what MKIV does with math (as all intermediate noad Subtle Differences
lists are processed at the LUA end): Implementation
\enabletrackers[math.analyzing] Virtual MKIV Font

\ruledhbox{$a = \sqrt{b~2 + \sin{c} - {1 \over \gammal}}$}
\disabletrackers[math.analyzing]

a b C— —

Traditional approach
Math In MKIV

Complications
U+0221A: vV v square root Side Effects

... continued

width: 860800, height: 1207040, depth: 54400, italic: 0 Features and Sizes

Subtle Diffi
mathclass: radical, mathname: surd ubtie birerences

Implementation
N Virtual MKIv Font
No More Macros

next: U+F05A9M=> U+F05AB=> U+F05AC=> U+FO05AD |=>U+FO05AE |
A

=> variants: U+023B7 M => U+020D31=> U+F0959 1T

[0x221A] = {
adobename = "radical",
category = "sm", cjkwd = "a", description = "SQUARE ROOT",

direction = "on", linebreak = "ai',
mathclass = "radical", mathname = "surd", unicodeslot = 0x221A,

Traditional approach

Math Classes
Math In MKIV
We use the character database to define math. Cornpllcatlons
Side Effects
U+0002F: / |/ solidus Features and Sizes
width: 642560, height: 915840, depth: 275200, italic: 0 Subtle Differences
Implementation
mathsymbol: U+02044 Virtual Mxiv Font
[0x002F] = { No More Macros
adobename = "slash", contextname = "textslash", ... continued

category = "po", cjkwd = "na", description = "SOLIDUS",
direction = "cs", linebreak = "sy",
mathsymbol = 0x2044, unicodeslot = 0x002F,

Traditional approach
Math In MKIV

... continued

: : . . : Complications
Future versions of MKIV will support the dictionary model as used in MATHML 3 _ p
Side Effects
(and OPENMATH). _
Features and Sizes
[0x2044] = { Subtle Differences
adobename = "fraction", Implementation
category = "sm", Virtual MK1V Font
contextname = "textfraction", No More Macros
description = "FRACTION SLASH", ... continued
direction = "cs", Math Classes
linebreak = "is",

mathspec = {
{ class = "binary", name = "slash" },
{ class = "close", name = "solidus" },

Ips
unicodeslot = 0x2044,

1 Traditional h
Dynamic Alphabets raditional approac
Math In MKIV
Complications
$abc \bf abc \bi abc$ Sidle Effects

$\mathscript abcdefghijklmnopqrstuvwxyz %
1234567890 ABCDEFGHIJKLMNOPQRSTUVWXYZ$\par
$\mathfraktur abcdefghijklmnopgrstuvwxyz %
1234567890 ABCDEFGHIJKLMNOPQRSTUVWXYZ$\par
$\mathblackboard abcdefghijklmnopqrstuvwxyz 7% No More Macros
1234567890 ABCDEFGHIJKLMNOPQRSTUVWXYZ$\par R e
$\mathscript abc IRZ \mathfraktur abc IRZ % Math Classes
\mathblackboard abc IRZ \ss abc IRZ 123$

Features and Sizes
Subtle Differences
Implementation
Virtual MK1v Font

... continued

1234567890
1234567890

123

1234567890

1234567890

123

Handy Automatisms

$ (a{,}b) = (1{.}3204{,}3{.}40) $

\setupmathematics[autopunctuation=no]

$(a,b) = (1.20,3.40) $
(a,b) = (1.20,3.40)

\setupmathematics[autopunctuation=yes]

$ (a,b) = (1.20,3.40) $
(a,b) = (1.20,3.40)

Traditional approach
Math In MKI1V
Complications
Side Effects
Features and Sizes
Subtle Differences
Implementation
Virtual MK1v Font
No More Macros
... continued

Math Classes
... continued
Dynamic Alphabets

Reverse Engineering

\def\PLAINldots{\ldotp\ldotp\ldotp}
\def\PLAINcdots{\cdotp\cdotp\cdotp}
\def\PLAINvdots

{\vbox{\forgetall\baselineskip.4\bodyfontsize\lineskiplimit\zeropo

\hbox{. }\hbox{.}\hbox{.}}}

\def\PLAINddots
{\mkernimuy,
\raise.7\bodyfontsize\ruledvbox{\kern.7\bodyfontsize\hbox{.}}%
\mkern2muj,
\raise.4\bodyfontsize\relax\ruledhbox{. 1}/
\mkern2muj,
\raise.1l\bodyfontsize\ruledhbox{. 1}
\mkernimu}
I
| (W
- bl L]

Traditional approach
Math In MKI1V
Complications
Side Effects
Features and Sizes
Subtle Differences
impiementation
Virtual MK1v Font
No More Macros
. . . continued

Math Classes

... continued
Dynamic Alphabets
Handy Automatisms

So ...

Inretrospectimplementing support for OPENTYPE math has proven to be easier
than expected, thanks to the fact that development and testing went smooth.

The virtual font building features made it possible to test OPENTYPE Cambria
as well as traditional TgX fonts at the same time, something that was important
because of all the new math parameters.

We're also confident that the upcoming extensions (like math alignment) can
be tested and handled conveniently.

Traditional approach
Math In MKIV
Complications
Side Effects
Features and Sizes
Subtle Differences
Implementation
Virtual MKIV Font
No More Macros
... continued
Math Classes
. . . continued
Dynamic Alphabets
Handy Automatisms
Reverse Engineering

