
where does TEX

end, Lua start

and vise versa



We see no reason to fundamentally

change the concept of TEX as it looks

like most users are happy with it. We

don't implement new solutions as it is

pretty hard to come up with a common

view on how pending issues can be

solved.

We open up the internals of TEX but

try to remain compatible where pos-

sible. The rest is up to the macro pro-

grammer and user. We will provide

tools to improve existing and imple-

ment new solutions. This is up to the

macro package and here we will focus

on how ConTEXt MkIV does is.

In ConTEXt, we started with just call-

ing Lua and piping something into TEX

(e.g. calcmath). At that stage Lua was

completely separated from TEX, there

was only a caller primitive and a print

function. This already permitted inter-

esting expandable testing macro that

were previously impossible.

When we got access to registers, we

started playing with calculating prop-

erties in Lua, but this was not that

spectacular. Only counters and dimen-

sions (including box dimensions) could

be accessed.

A bit more ambitious effort was re-

placing all file handling in Lua, includ-

ing all things normally done by the

kpse library. Reading from zip files,

http, ftp etc. has become possible. TEX

itself is rather unaware of this. About

at the same time we moved much mul-

tipass data to Lua.

Input regimes (including utf-16) was

reimplemented in Lua, and all old code

was kicked out of the ConTEXt ker-

nel. This was the first code that was

replaced.

More complex Lua scripting was added

and again existing TEX code was re-

placed, like MetaPost conversion

which involved piping data to Lua as

well as print back pdf literals. Verba-

tim (pretty printing) and buffers are

now mostly dealt with by Lua as well.

When we got access to node lists, it

became possible to manipulate for in-

stance glyph related data. Suddenly

we could provide more robust solu-

tions for case swapping and such.

Major chunks of Lua code started

showing up when the font loading

was opened up. So next we brought

loading under Lua control which then

includes preparing for OpenType pro-

cessing.



Reading from afm files replaced tfm

when possible . . . we have wide

Type1 fonts now. As a result font en-

coding has been removed from MkIV.

Only math still needs tfm files but that

will go too.

Driven by the Oriental TEX project

we started writing support for ad-

vanced OpenType features. Every-

thing is completely under Lua control.

Surprisingly the rather major node-

crunching is quite doable because Lua

is so fast.

Runtime virtual font building can be

used to construct missing glyphs. In-

stead of frozen features we can sup-

port them dynamically when needed.

Things like this are kind of new to TEX

but are no real extensions, they are

just made possible by opening up.

The generic attribute mechanism (each

node can have one or more attribut-

es) triggered a rewrite of color sup-

port. This replaced much code, was

not much faster, but more robust (due

to less interference, i.e. no whatsits).

It needs a cleanup with respect to the

backend.

We started experimenting with ad-

vanced vertical spacing models by ma-

nipulating node lists but we're a bit

ahead of what is opened up now. The

next stop is opening up math. In MkIV

we already have started reorganizing

math (needed for projects). We really

need the TEX-Gyre math fonts!

The stream driven MkII xmlhandling

was replaced by a tree based method

that permits arbitrary access, flush-

ing and manipulation of the tree. As

a usage case MathML support is reim-

plemented.

The new img library permitted a reim-

plementation of graphic inclusion and

its components: figure libraries, fall-

backs, conversion, tracing, etc.

Currently the sectioning mechanisms,

numbering and lists are reimplement-

ed in Lua, apart from the typesetting

part. More data can be carries around

and more status information is kept.

Bits and pieces of the typesetting op-

tions are replaced and extended and

more is to come. Eventually we will

let Lua do what it can do best, and let

TEX deal with the typesetting.



You can use just Lua, forget about the

TEX internals part and just print things

to TEX.

You can get information from TEX (reg-

isters), do some calculations, and feed

back something to TEX.

You can pass data to Lua, manipulate

it, and feed back (maybe something)

completely different to TEX.

You can replace components of TEX,

like file handling, by Lua code which is

more flexible.

You can replace more fundamental

parts of TEX, like font loading and def-

initions, and for instance create virtual

fonts.

You can use Lua to implement com-

plex input and font manipulations for

instance bidirectional typesetting and

OpenType features.

You can set attributes at the TEX end

and at various moments decide to use

their values to manipulate node lists.

You can use Lua to replace typesetting

components of TEX, like hyphenation,

kerning, paragraph building.

You can enhance TEX with new fea-

tures, not by hardcoding it in the core

engine but by using (macro specific)

Lua code.


