
MPlib

ConTEXt

MkIV



We started using MetaPost over ten

years ago. Graphics were embedded

as eps.

Challenged by Sebastian Rahtz we

wrote a MetaPost to pdf converter in

TEX so that we could use them directly.

We also added some extensions (us-

ing specials) like shading, transparency

and support for processcolors, spotcol-

ors and multitones.

At some point a mechanism appeared

to include MetaPost code in the doc-

ument source. Processing could

take place between runs or directly

(write18).

Embedding text was taken care of as

efficient as possible, later by using

some trickery that avoided separate

runs altogether.

Reusing graphics has always been part

of the game, either or not based on the

current state of the document (dimen-

sions, colors, etc.).

Such graphics are rather well integrat-

ed in background mechanisms and can

adapt themselves to situations.

Graphics know a bit about the current

situation, i.e. layout, font and other

dimensions are passed along.

By now the mechanisms are pretty

stable and frequently used by users.

No real in-depth knowledge is needed.



In education documents we often need

backgrounds, rules in margins, under-

lining and special makeup of section

and chapter titles.

This easily mounts up to tens of graph-

ics per page, even when graphic data is

collected.

This may add several seconds or run-

time per page and more when we deal

with text in MetaPost (which can be

avoided).

For special purposes like flowcharts

and gnuplot graphics runtime may

even be more influenced by calling

MetaPost.

The expectation was that by staying in-

side TEX we could gain a lot. Of course

MetaPost still had to do some work.

In ConTEXt MkIV we already had reim-

plemented the MetaPost to pdf con-

verter which in Lua is a bit faster than

in TEX (the bottleneck is now in the lit-

erals).

Some experiments (with Fabrice)

demonstrated that using pipes was too

fragile in the current situation (timing

problems).

Using a tight integration (i.e. a library)

made more sense and therefore the

mplib project was started.

That library would focus on the graph-

ic part as it was expected that text

could be dealt with at the TEX end.



In order to test the library the Meta-

Post to pdf converter had to be rewrit-

ten (again).

Although we could have used the

PostScript parser, it made more sense

to operate on the raw output (repre-

sented in tables).

Experiments with the first version of

the library showed that we could easi-

ly get a throughput of thousands of

graphics per second (processing and

conversion).

The most complex part was (as usual)

dealing with paths drawn by special

pens, a complication that eventually

resulted in a proper helper function.

We had expected to be able to use the

relative new pre/postscript features of

MetaPost, but this mechanism needs

to be extended in order to replace all

special based tricks.

Multiple runs for a graphic (as used for

special text processing and outlines)

is handled by MkIV internally in such

a way that processing time is hardly

influenced.

All that users now see of MetaPost is

the reported runtime and of course

error messages (these go to the TEX

log).

In everyday documents MetaPost run-

time has become close to zero, and in

complex documents neglectable com-

pared to the overall runtime.



All existing mechanisms are supported

in ConTEXt MkIV. It really helps that

users are eager to update and test.

MetaPost format generation is done

automatically and are kept in a

ConTEXt specific namespace (bound

to the TEX format).

Multiple formats are supported but not

yet at the user interface level. Soon

each graphic can get a format attached.

We will also support multiple in-

stances of a format so that user graph-

ics will not interfere with system

graphics (this is handy for modules).

We will use mplib for runtime font

generation. Tests show that a gener-

ation speed of 500-1000 glyphs with

pens per second uncached is feasible

(Dell M90 with Vista).

Eventually mplib might produce prop-

er charstrings that then can be used to

construct (and extend) real fonts on

the fly.

In our reference document of (current-

ly) 240 pages the 66 graphics take .35

seconds. The speed gain is even more

noticeable for the LuaTEX manual.

Document styles that operate close to

what is reasonable now behave rather

normal. We currently test these mech-

anisms on real projects.

Tight integration of MetaPost resulted

in many users using these features.

We expect even more usage due to the

neglectable runtime.


